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Abstract

DINO (DIstributed Numerically Oriented language) is a language for writing parallel programs for
distributed memory (MIMD) multiprocessors. It is oriented towards expressing data parallel algorithms,
which predominate in parallel numerical computation. Its goal is to make programming such algorithms
natural and easy, without hindering their run-time efficiency. DINO consists of standard C augmented by
several high level parallel constructs that are intended to allow the parallel program to conform to the way
an algorithm designer naturally thinks about parallel algorithms. The key constructs are the abiiity to
declare a virtual parallel computer that is best suited to the parallel computation, the ability to map distri-
buted data structures onto this virtual machine, and the ability to define procedures that will run on each
processor of the virtual machine concurrently. Most of the remaining details of distributed parallel com-
putation, including process management and interprocessor communication, result implicitly from these
high level constructs and are handled automatically by the compiler. This paper describes the syntax and
semantics of the DINO language, gives examples of DINO programs, presents a critique of the DINO

language features, and discusses the performance of code generated by the DINO compiler.






1.  Introduction

DINO (DIstributed Numerically Oriented language) is a language for writing parallel numerical
programs for distributed memory multiprocessors. By a distributed memory multiprocessor we mean a
computer with multiple, independent processors, each with its own memory, but with no shared memory
or shared address space, so that communication between processors is accomplished by passing messages.

Examples include MIMD hypercubes, and networks of computers used as multiprocessors.

It is generally harder to design an algorithm for a multiprocessor than for a serial machine, because
the algorithm designer has more tasks to accomplish. First, the algorithm designer must divide the desired
computation among the available processors. Second, the algorithm designer must decide how these
processes will synchronize. In addition, on a distributed memory multiprocessor, the algorithm designer
must consider how data should be distributed among the processors, and how the processors should com-

municate any shared information.

The goal of DINO is to make programming distributed memory parallel numerical algorithms as
easy as possible, without hindering efficiency. We believe that the key to this goal is raising the task of
specifying algorithm and data decomposition, interprocess communication, and process management to a
higher level of abstraction than is provided in many current message passing systems. DINO accom-
plishes this by providing high level parallel constructs that conform to the way the algorithm designer
naturally thinks about the parallel algorithm. This, in turn, transfers many of the low-level detaiis associ-
ated with distributed parallel computation to the compiler. In particular, details regarding message pass-
ing, process management, and synchronization are no longer necessary in the code that the programmer

writes, and associated efficiency considerations are addressed by the compiler.

This high level approach to distributed numerical computation is feasible because so many numeri-
cal algorithms are highly structured. The major data structures in these algorithms are usually arrays, and
sometimes trees. In addition, the algorithms usually exhibit data parallelism, where at each stage of the

computation, parallelism is achieved by dividing the data structures into pieces, and performing similar or
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identical computations on each piece concurrently. DINO is mainly intended to support such data paral-

lel computation. DINO also provides some support for functional parallelism.

The basic approach taken in DINO is to provide a top down description of the distributed parallel
algorithm. The programmer first defines a virtual parallel machine that best fits the major data structures
and communication patterns of the algorithm. Next, the programmer specifies the way that these major
data structures will be distributed, and possibly replicated, among the virtual processors. Finally, the pro-
grammer provides procedures that will run on each virtual processor concurrently. Thus the basic model
of parallelism is Single Program Multiple Data, although far more complexity is possible. Most of the
remaining details of parallel computation and communication are handled implicitly by the compiler. A
key component in making this approach viable has been the development of a rich mechanism for speci-
fying the mappings of data structures to virtual machines, along with the efficient implementation of these

mappings and the resultant communication patterns in the compiler.

Sequential code in a DINO program is written in standard C; DINO is a superset of C. Only the
parallel constructs in DINO, and a few related additions, are new. We have chosen to build DINO on top
of C because C is widely used and is available on our target parallel machines, because its structured form
fits well with our parallel approach, because its dynamic data structures are useful to many numerical
applications, and because we have many tools available for implementing a C compiler. However the
DINO language as described in this paper could have been built on top of almost any impgrative sequen-

tial language, including FORTRAN.

Implicit in our approach to parallel programming is the belief that given the current state of
knowledge in this area, a language cannot completely hide the distributed memory parallel machine from
the programmer if the result is to be programs that run efficiently. In conjunction, we believe that most
parallel algorithm designers do have an idea of how to break up the data structures and how to act upon
them coﬁcurrently in order to achieve efficient parallel performance. In DINO, we are trying to provide
just enough high level parallel structure to allow the programmer to specify this information, while mak-

ing the compiler do as much of the tedious work as possible.
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To our knowledge, there is relatively little other research that has led to implemented languages for
distributed parallel numerical computation. C* [RSt87] and Kali [MvR89, KMvR90] are probably the
closest languages we have found to DINO, although DINO was developed entirely independently of both
of them. C* is a C superset used to program the (SIMD) Connection Machine. Its domain and selection
statement features are similar to DINO’s environment structures and composite procedures, respectively;
however, its SIMD orientation gives it a considerably different philosophy and flavor from DINO. One
prominent difference is C*’s local view of data structures és opposed to DINO’s global view. Kali is a
high level language for data parallel, SPMD computation. It contains constructs for virtual parallel
machines and distributed data structures that are similar to DINO’s (but see next paragraph). Its program-
ming model, however, is considerably more restrictive than DINO’s, allowing communication only upon
entering and leaving ‘‘forall’’ loops. Another parallel language that has been implemented on distributed
memory multiprocessors, Linda [GCC85], is designed around a shared memory paradigm, the ‘‘tuple
space’’. Due to this approach, its constructs and philosophy are very different from DINO’s. For exam-
ple, the mapping of data to processors is not specified by the Linda programmer and must be optimized at
run time. Pisces [Pr87] and the Cosmic Environment [SSS88] are examples of systems that also support
distributed parallel numerical applications, but using a lower level of support for parallelism than DINO.
Several languages, such as Spot [S090] and Apply [HWW89], support specific application areas where a
C*-like local view of the computation is appropriate; our research aims to support a broader class of cém-
putations and this paradigm is not sufficient. Our work has been influenced considerably by the Force

[Jo87], which supports data parallel computation on shared memory multiprocessors.

In recent years, the concept of distributed data, which is key to DINO, has been considered by
several research projects, including [SBB87], [CK88] and [MvR89]. An important difference in the
DINO version is that one to many mappings of data to processors, as well as one to one mappings, are
supported. This turns out to be important for implicit interprocess communication. Suspense [RuW88],
which is oriented to grid-based differential equations algorithms, shares some of these data partitioning
and overlapping approaches of DINO. The concept of virtual machines is also found in Structured Pro-

cess [LW8S5]. Finally, some earlier related research oriented primarily to SIMD computation includes



[KS85], [Re84].

The remainder of this paper is organized as follows. Section 2 gives a brief informal overview of
the DINO language, while Section 3 gives a complete, more formal description. Section 4 presents three
simple DINO examples, and uses them as a basis for a critique of the DINO language features. Section 5
briefly summarizes the current status of the language and areas for related future research. Preliminary
discussions of the DINO project can be found in [RSc87, RSW88], and a moderate-sized example is

presented in [RSW89].

2.  DINO Overview
2.1. Environments

To create a parallel DINO program, the programmer first declares a structure of environments that
best fits the number of processes and the communication pattern betweexi processes in the parallel algo-
rithm. This structure can be viewed as a virtual parallel machine constructed for the particular algorithm.
In our experience, the most common structures of environments are one, two, and higher dimensional
arrays of processes. This is because the parallelism in numerical algorithms is often derived from the par-

titioning of physical space into neighboring subregions, or from partitioning matrices or vectors.

Each environment in a structure of environments consists of data and procedures. It may contain
multiple procedures, but only one process in an environment may be active at a time. Each environment
in a single structure contains identical procedures and data structures, although the contents of the data

structures, and the sequence of statements executed at run time, can differ.

Each DINO program also contains a ‘‘*host’’ environment, a scalar environment that acts as the mas-
ter process. The following declarations declare ‘‘host’’ to be the host environment and ‘‘node’’ to be a

one dimensional array of 32 environments:



environment host {
<body of environment declaration>
}

environment node {32] {
<body of environment declaration>
}

2.2. Composite Procedures

A composite procedure is a set of identical procedures, one residing within each environment of a
structure of environments. The parameters of a composite procedure typically are distributed variables
(discussed below). A composite procedure call causes each instance of the procedure to execute con-
currently, utilizing the portion of the distributed parameters and other distributed data structures that are

mapped to its environment. This results in a ‘‘single program, multiple data’’ form of parallelism.

An example of a composite procedure declaration is:

composite MatVecMult(in M, in v, out a)
<parameter declarations>

{

<body of procedure>

The keywords ‘‘in’’ and ‘“‘out’’ specify that the distributed parameters are value and result parameters,
respectively. If there is no keyword, the default is value-result. This difference from the C parameter pass-
ing mechanism, which pertains only to parameters of composite procedures, is necessary because C’s
mechanism of passing a pointer to an object that is changed is not appropriate for remote procedure calls

on a distributed memory multiprocessor.

An example of a composite procedure call corresponding to the above declaration is:

MatVecMult(Min[]{], vin[], aout[])#;

The empty brackets (‘‘[]’’) mean that the entire corresponding dimension is included. The pound sign

(“*#"") is used in DINO when an action involves a remote environment,



2.3. Distributed Data

DINO encourages the programmer to take a global view of data structures that are distributed
among multiple processors and operated upon concurrently. The programmer does this by declaring a
data structure as distributed data, and then specifying the manner in which that data structure is mapped
to the underlying virtual machine given by the programmer-defined structure of environments. A map-
ping of data to environments may be one to one, one to many, or one to all. These mappings determine
how the environments access and share the data, and are the key to making interprocess communication
natural and implicit. Distributed variables are referenced using their global names and subscripts, as

described below.

The following distributed data declarations distribute the matrix M and the vectors v and a used as

parameters in Section 2.2 to the structure of environments node defined in Section 2.1:

float distributed M[N][N] map BlockCol;
float distributed v{N] map all;
float distributed a[N] map Block;

The names ‘‘BlockCol,”” ‘‘all,”” and ‘‘Block’’ come from DINO’s library of pre-defined mapping func-
tions. Their meanings are the obvious ones: N/P columns of M are mapped to each of the P node
environments, the entire vector v is mapped to each node environment, and N/P elements of a are
mapped to each node environment. Thus, the mappings of M and a@ are partitions, with only one copy of
any given element existing among all the node environments. In contrast, the \;ector v is replicated, with

a local copy of v existing in each node environment.

Distributed data can be used to implicitly generate interprocess communication in two ways. (In
both cases, blocks of data can be sent in a single operation.) One is by using a distributed variable as a
parameter in a composite procedure call, as illustrated above. At procedure invocation, the values of dis-
tributed variables declared as input parameters are distributed to all environments to which they are
mapped. Upon return from the composite procedure, the values of distributed variables declared as out-

put parameters are collected from their environments (variables that are mapped to multiple environments
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are collected from their ‘“home’’ environments, see below).

Communication also results from ‘‘remote’’ access to distributed variables. In general, distributed
data can be accessed either locally or remotely. A local access, which uses standard syntax, affects just
the local copy and is the same as any standard reference to a variable. A remote access, which uses the
variable name followed by a # sign, can be used with a variable element that is mapped to multiple
environments. A remote assignment to a distributed variable causes a message containing its current
value to be sent to all other environment(s) to which that variable has been mapped. A remote read of a
distribilted variable receives such a message (as described in more detail below) and updates the

variable’s value. Examples of a remote read and write are:

Temp = T[d}# + 3;

T[idJ#=Temp - 3;

In the first case, a new value of T [id] is received and stored, and is used in calculating the new value of
Temp . In the second case, the value of Temp - 3 is assigned to the local copy of T [id] and is also sent to

all other environments to which T'[id ] is mapped.

In the default case DINO distributed variables are ‘‘synchronous’’, and communication using such
variables is deterministic. A remote read causes the local copy of the variable to be overwritten with the
first (least recent) value of that variable that has been received from its ‘‘home’’ environment but not yet
utilized; if no new value is present, it blocks until one is received. (The concept of a home environment
is explained in Section 3.4.1; basically, a replicated variable has a primary environment, from which new
values of the variable are generated, and one or more secondary environments, at which new values are
received. As with most constructs described in this overview section, other options exist and may be
specified explicitly.) A distributed variable may also be declared to be asynchronous by using the key-
words ‘‘asynchronous distributed’’ instead of *‘distributed’’ in its declaration. The execution of a remote
write is unaffected. A remote read of an asynchronous variable causes it to overwrite its local copy with

the latest value that has been received since the last remote read; if no value has been received, it retains
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its current local value, and does not block. Thus its execution may be non-deterministic. These con-
structs allow experimentation with synchronous and asynchronous versions of the same algorithm by sim-

ply changing a variable declaration.

DINO provides a library containing many commonly used mapping functions, including the ones
used above, and a general facility that allows the user to declare a very large set of data mappings (Sec-
tion 3.4.1). These include the ability to specify block mappings, wrap mappings of arbitrary width, and

arbitrary degrees of overlap, in each axis of the distributed data structure.

3.  The DINO Language

In this section we present a more complete description of the syntax and semantics of the language.
We use a combination of discussion, examples, and EBNF notation [WG84] to describe the additions to
C that make up DINO. An EBNF specification for the DINO extensions to the C language, and an expla-
nation of EBNF notation, can be found in Appendix A. (Note that this specification includes several
EBNF constructs for standard C that are unchanged, namely CONSTANT-EXPRESSION, EXPRES-
SION LIST, FUNCTION-BODY, and IDENTIFIER; several EBNF constructs for standard C that are
expanded, namely DECLARATOR, EXPRESSION, FUNCTION-DEFINITION, PRIMARY, AND
STATEMENT, and one EBNF construct for standard C, DATA-DEFINITION, whose definition is
unchanged but which contains a part, DECLARATOR, that is expanded. In all cases, only the new

definitions are included here.) For a BNF specification for C, see [KR78].

3.1. Program Structure

PROGRAM ::= ( ENVIRONMENT | MAPPING_FUNCTION | DATA_DEFINITION )+.

A program consists of one or more environment declarations, zero or more mapping function
declarations, and zero or more (distributed) data declarations. One of the environment declarations must

be defined as a scalar environment with the name ‘‘host’’. This environment must contain a procedure



-9.

named ‘‘main’’, where execution starts. The remaining environment declarations generally define struc-

tures of environments that contain composite procedures which are invoked from the host.

Distributed data structures that are declared at the program level are mapped to one or more
environment structures in the program, as specified by their mapping functions. (Ordinary data declara-
tions can also be made at this level. If they are, independent copies are instantiated on every environment
in the program.) Mapping functions that are declared at the program level are accessible to all parts of the

program.

3.2. Environments

ENVIRONMENT ::=
‘environment’ IDENTIFIER DIMENSION* ‘{ EXTERNAL_DEFINITION+ ¢}’.

DIMENSION ::= ‘" EXPRESSION [ ¢’ IDENTIFIER] ‘).

EXTERNAL_DEFINITION :=
FUNCTION_DEFINITION | DATA_DEFINITION | MAPPING_FUNCTION.

A structure of environments provides a virtual parallel machine, and a mechémism for building
parallel algorithms in a top down fashion. An environment may contain composite procedures, standard
C functions, distributed data declarations, standard C data declarations, and mapping functions. Each
environment within a given structure contains the same procedures, functions, and C data declarations,

and shares the same distributed data declarations.

A structure of environments may be any single or multiple dimensional array. For example, the
declaration
environment grid [N:xid] (M:yid] { ... }
specifies an N times M array of virtual processors named ‘‘grid’’. In order to give each environment
within a structure an identity that can be used in calculations, the programmer can declare constants that
will contain the subscripts identifying that particular environment. In the above example, these are *‘xid”’
and “‘yid’’. Most often these are used to refer to that environment’s portion of a distributed data struc-

ture, for example a matrix element A [xid ][yid ].
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A DINO program may contain any number of environment declarations. Typically only one, the
host, is scalar, and one or more are arrays. Multiple structures of environments may be used when suc-
cessive phases of a computation map naturally onto different parallel machines (in this case, generally
only the environments in one structure become active at once), or in functionally parallel programs (in

this case the environments in multiple structures become active at the same time, see Section 3.3).

An environment can contain an arbitrary number of composite procedures and standard C functions.
However only one task, or thread of control, may be active in an environment at a time. In addition, the
only way to start a task executing in an environment other than the host is to call a composite procedure
which resides in that environment. These two facts imply that there can not be any composite procedures

in the host environment because procedure ‘‘main’’ is always active.

A procedure executing in one environment can not directly access data in another environment. Pro-
cedures in two environments can exchange information only if there is cooperation between the pro-
cedures, namely a remote read and write of a distributed variable, or the use of a reduction operator on a
distributed variable (Sections 3.4, 3.5). (We note that an option that relaxes these rules somewhat is
likely to be available in the future — see Section 5 — but that there are significant tradeoffs between
relaxing these rules in general and providing a language that is applicable and efficient for a wide variety
of applications.) These semantics and the single task semantics described above imply that there is is no
hidden shared-memory emulation in DINO, and also results in DINO programs being deterministic unless

asynchronous distributed variables or explicit environment sets are used (see Section 3.4).

Structures of environments are treated as blocks with respect to scope. Ordinary data that is
declared within an environment structure is copied to every environment in that structure. Copies of ordi-
nary data on separate environments have no relation to each other and can only be accessed within their
own environments. Distributed data is treated as described in Section 3.4. The one exception to this
scoping rule is composite procedures, which are always in the topmost scope. Thus composite procedures

may be called from any environment except their own, i.e. recursive calls are not allowed.
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The DINO compiler creates one process for every environment in each structure, and maps these
processes statically onto the actual parallel machine. This is done in a manner that attempts to optimize
the distance, on the parallel computer, between contiguously indexed environments in each structure,
using standard techniques [In87]. The mapping also attempts to optimize load balance, as follows. If any
structure of environments contains as many or more environments than there are actual processors, then
the environments are partitioned evenly over the entire parallel machine. (When a composite procedure is
invoked in a structure with more environments than processors, multiprogramming occurs. This style of
programming does not lead to optimal efficiency, but may in future versions of DINO — see Section 5.)
If there are two or more structures of environments that together contain no more environments than the

total number of processors, then each environment is assigned to a unique processor.

3.3. Composite Procedures

declaration:

FUNCTION_DEFINITION ::=
‘composite’ IDENTIFIER ‘¢ [COMP_PARAMETER_LIST] ¢y’ FUNCTION_BODY .

COMP_PARAMETER_LIST ::= ( [“in’ | ‘out’] IDENTIFIER ) || .

call:

STATEMENT ::=
IDENTIFIER ‘C [EXPRESSION_LIST] )y ‘4 [ ‘{* ENV_EXP ‘} ][ ‘s STATEMENT ].

ENV_EXP ::= EXPRESSION.

Composite procedures are used to implement concurrency. A composite procedure consists of mul-
tiple copies of the same procedure, one residing within each environment of a structure of environments.
Calling the composite procedure invokes all of these procedures at the same time. Typically, each pro-
cedure works on a different part of some distributed data structure(s), resulting in a single program, multi-
ple data (SPMD) form of parallelism. These distributed data structures may either be defined in the struc-
ture of environments or globally, or may be parameters to the composite procedure. Each prbcedure may

also contain standard local data. We will first describe the various parts of composite procedure
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declaration and invocation statements, and then the order of events that occur when a composite pro-

cedure is invoked.

Examples illustrating a composite procedure and its invocation were given in Section 2.2. The for-
mal parameters of a composite procedure may be distributed variables or standard variables whose scope
includes the composite procedure. Formal parameters that are distributed variables may be preceded by
the keywords ‘‘in’’ (call-by-value), ‘‘out’’ (call-by-result), or no keyword (call-by-value/result). Formal
parameters that are standard variables must be preceded by ‘‘in’’, and are input parameters that are repli-

cated in all the environments on which the composite procedure is called.

A composite procedure call has the same syntax as for ordinary C functions, except that arrays or
subsections of arrays can be used (see Section 3.6), remote references to distributed parameters can be
actual parameters, and the parameter list is followed by a # sign. All actual parameters corresponding to
result and value/result parameters must refer to variables. Unlike C, DINO checks the number and types
of actual parameters against the formal parameters in a composite procedure call. Composite procedures

do not return a value.

When a composite procedure is called, the invocation can be limited to a subset of thé environments
in the environment structure on which it is defined. This is accomplished using the optional ENV_EXP
following the # sign, which returns a subset of environments on which the procedure is to be invoked (the
‘‘active-set’’). The form of ENV_EXP is one or more environment names (or ranges — see Section 3.6)
connected by set union or difference operators ‘‘+’” or ‘‘-’’, If this expression is not given, then the com-

posite procedure is invoked on all of the environments in the structure.

Functional parallelism is achieved in DINO by utilizing the optional *‘ :: STATEMENT"’ construct
following a composite procedure call (this definition is recursive, see the EBNF specification above).
This STATEMENT is executed concurrently with the composite procedures specified by the call. It can
be either another composite procedure call utilizing a different structure of environments (or a disjoint

subset of the same structure), or a standard C statement that is executed on the host. The program blocks
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until both the composite procedure and the concurrent statement complete execution.

The keyword ‘‘caller’’, when used within a composite procedure, is the environment which invoked
that composite procedure. This may be used when a composite procedure is executing concurrently with
code on the invoking environment, as described in the previous paragraph, and wants to communicate
with the procedure that invoked it, via explicit reads and writes of global distributed data (see Section

3.4.2).

Now we describe in detail the events that occur when a composite procedure is invoked. First, the
ENV_EXP expression is evaluated if it is given. This defines an active-set of environments as described
above. Only procedures and environments in the active-set are used in the rest of the sequence. Second,
all of the actual parameters that correspond to value and value/result formal parameters are evaluated. If
any of these actual parameters contains a ‘‘#’’ operator then a remote read is executed to get the value
(see Section 3.4.2). Third, the values of the actual parameters are assigned to the formal parameters and
sent to the appropriate environments. For formal parameters that are not defined as ‘‘distributed’’, the
actual parameter value is sent to each environment in the active-set. If the formal parameter is defined as
‘‘distributed’’ then the actual parameter value is distributed to each environment that it is mapped to (but
limited to the active-set). Fourth, the procedure is actually called at each environment in the active set. At
the same time, the concurrent STATEMENT, if any, is executed in the calling environment (possibly
resulting in one or more additional composite procedure calls on different environments)‘. Fifth, after all
these procedures/STATEMENT have completed executing, the result and value/result parameters are
returned. Each element of a result parameter is retumed from exactly one environment, its ‘‘home”’
environment (see Section 3.4.1). If any of these actual parameters contains a ‘‘#’’ operator then a remote
write is be executed. Finally, the calling environment continues execution after the concurrent STATE-

MENT.
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3.4. Distributed Data

Distributed data is used to map global data structures onto the structures of environments in a DINO
program. It provides the mechanism for communication between environments, which is accomplished
by using distributed variables as parameters to composite procedures, and by remote accesses to distri-
buted variables. It also allows the programmer to maintain a global view of these data structures, and

joins with composite procedures to produce an SPMD model of computation.

Currently, the types of data structures that can be distributed are arrays of any dimension. DINO
provides a rich mechanism for specifying the mappings of such data structures onto structures of environ-
ments, including many different one-to-one and one-to-many mappings, and also provides fairly efficient
implementation of the communication that can result through the use of these variables. The declaration
of distributed data, including the definition and meaning of mapping functions, is discussed in Section
3.4.1. The use of distributed data, primarily remote accesses for communication,' is discussed in Section

34.2.

3.4.1 Declaring Distributed Data -- Mapping Functions

distributed data declaration:

DECLARATOR ::=
[‘asynch’ ] ‘distributed’ DECLARATOR ( ‘" CONSTANT_EXPRESSION ‘7’ ) + MAPPING .

MAPPING ::= ‘map’ ( ‘all’ | IDENTIFIER | ((IDENTIFIER IDENTIFIER) || ‘map’ ) ).
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mapping function definition:

MAPPING_FUNCTION ::=
‘map’ IDENTIFIER ‘=’ ( ‘[ MAP_TYPE [ALIGN] P )+.

MAP_TYPE ::= ‘all’ | ‘compress’ | BLOCK_MAP | WRAP_MAP.

BLOCK_MAP ::=
‘block’ [ ‘overlap’ [ EXPRESSION] ] [‘cross’ ‘axis’ EXPRESSION].

WRAP_MAP ::= ‘wrap’ [ EXPRESSION].

ALIGN ::= ‘align’ ‘axis’ EXPRESSION.

Distributed data declarations follow standard C syntax, except that the keyword ‘‘distributed’’ pre-
cedes the name of the distributed variable, and the keyword ‘‘map’’ followed by the name of a mapping
function follows it. An example is

float distributed A[N][N] map BlockRow;
The mapping function is either taken from DINOQ’s library of predefined mapping functions, as is the case
with ‘‘BlockRow’’ above, or is defined by a mapping function definition statement. The remainder of

this subsection discusses mapping functions.

DINO provides predefined mapping functions for mapping one and two dimensional (hereafter
“1D” or ‘“‘2D’’) data structures onto 1D structures of environments, and 2D data structures onto 2D
structures of environments. The predefined 1D to 1D mappings are

Block, Wrap, BlockOverlap.
They can be used to map any array of N variables onto any array of P environments, and work in a fairly
obvious way. If N is a multiple of P, then ‘‘Block’’ maps the first N/P data elements onto the first
environment and so on; if N <P then the first N environments contain one element each and the last N—P
contain none, while if N>P but N is not a multiple of P, then the first NV mod P environments contain
an extra element. ‘‘“Wrap’’ maps each element i (i =0, ..., N—1) to environment [{ mod P]. ‘‘BlockOver-
lap’’ does a Block mapping and in addition, maps the first and last elements of each block (except ele-
ments O and N -1) to the next lower and higher environment, respectively. (One-sided overlaps and wider

overlaps are also possible, see below).
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The predefined mappings for mapping 2D (M x N) data structures to 1D (P ) environment structures

are
BlockRow, BlockCol, WrapRow, WrapCol, BlockRowOverlap, BlockColOverlap.
They work identically to the above 1D to 1D mappings except that rows or columns are used in the place
of individual elements. For mapping 2D (M x N) data structures onto 2D (P x Q) environment struc-
tures, the predefined mapping functions are
BlockBlock, FivePoint, NinePoint.

““BlockBlock’’ is the cross-product of a block mapping of the first axis of the data structure onto the first
axis of the environment structure with a block mapping of the second axis of the data structure onto the
second axis of the environment structure, resulting in sub-arrays of size M/P x N/Q on each environ-
ment. ‘‘FivePoint”’ is the cross product of a BlockOverlap mapping in each direction; in the case when
M=P and N=Q it reduces to the standard five point star (element [i][j] mapped on to environments [i -
NG G+10G1 GIUL GG-11, and [£][j+1], and visa versa). ‘‘NinePoint’’ is a FivePoint mapping
where in addition the corner elements are included in the overlap (in the M=P, N=Q case these are [i-
1307 -11, [i-110j +1], [i+11{j-1], [ +1][j+1]). Finally, the mapping keyword ‘‘all’’ maps all the elements

of any dimensional data structure onto each environment of any dimensional structure of environments.

All these predefined mapping functions are special cases of DINO’s general facility for defining
mapping functions. Because this facility is rather complex, we will only give a general idea of it here and
then give a number of examples; for more detail, see [RoW90]. The first part. of the mapping function
specifies how the axes of the data structure are matched to the axes of the environment structure, using
the keywords ‘‘compress’’ (when the data structure has higher dimension, see below) and ‘‘align axis”’
(to override the default mapping of axis { to axis i). The second part specifies how a specific data axis is
mapped onto a specific environment axis, using the keywords ‘‘block’’, ‘‘wrap’’, and ‘‘all’’. Finally, one
may specify the width of wraps if greater than 1 (‘*‘EXPRESSION"’ in the WRAP_MAP rule), or the size

and directions of overlaps in a block mapping (‘‘overlap’’ and *‘cross axis’”).
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For example, BlockRow is defined by
map BlockRow = [block]{compress]
which says to block map the first axis of the data structure onto the first axis of the environment structure,
and not to break up the second data axis. For WrapRow one replaces ‘‘block’’ by *‘wrap’’, while for
BlockRowOverlap one replaces ‘‘block’’ by *‘block overlap 1,1°’. The ‘1,1’ specifies one row of over-
lap to the left and right respectively, and can be replaced by any pair of nonnegative numbers. The
column mappings are achieved by interchanging the order of the two expressions, e.g.
““[compress][block]’’. BlockBlock is defined by *‘[block][block]’’; if one wants to map axes 0 and 1 of
the data structure to axes 1 and O of the environment structure one uses ‘‘[block align axis 1][block align
axis 0]"’ instead. FivePoint is ‘‘[block overlap 1,1 ][block overlap 1,1 ]** while NinePoint is ‘‘[block
overlap 1,1 cross axis 1][block overlap 1,1 ]’. In any of these cases an axis could instead be mapped

‘“wrap x’’, resulting in a wrap mapping of that axis by blocks of width x (the default is x=1).

Implicitly associated with each mapping function is the specification of one ‘‘home’’ environment,
and zero or more ‘‘copy’’ environments, for each element of the distributed data structure. These con-
structs have an effect when distributed data structures are parameters to composite procedures (see Sec-
tion 3.3) and in remote accesses to distributed data (Section 3.4.2). If an element of a distributed data
structure is mapped to only one environment, this is its home. If it is mapped to multiple environments,
this must be done using either “‘overlap’’ or ‘‘all’’. With overlap, the home environment is the environ-
ment that the data element would be mapped to if the overlap term was omitted, while the additional
environments that the overlap term causes it to be mapped to are its copy environments. (This concept is
consistent with many uses of such mappings, for example in differential equation solvers based upon
grids of points, where only one process produces new values of the shared grid point and the bordering
processes consume these values.) If an element is mapped using ‘‘all’’, then we arbitrarily consider the
lowest subscripted environment to be its home and the remainder to be copy environments, but this dis-
tinction is generally unimportant since such variables are usually either input-only parameters, or uni-
‘formly shared variables internal to the composite procedure. The semantics of home and copy environ-

ments also assure that DINO programs are deterministic in the default case (see Section 3.4.2).



-18 -

Mapping function declarations can be placed either outside any environments, or inside the
appropriate environment (but outside its functions and composite procedures). Distributed data may be
declared at any level of a DINO program. Both follow standard scoping rules. The MAPPING portion of
a distributed data declaration that is outside any environment must use the ‘‘IDENTIFIER IDENTIFIER ||
map’’ syntax, where the second identifier in each pair is an environment name, e.g. ‘‘float distributed
A[N][N] map grid BlockBlock map node BlockRow’’, where grid and node are environment structures

defined in Section 3.2 and 2.1.

3.4.2 Using Distributed Data

EXPRESSION ::=
PRIMARY “ [ ‘{” ENV_EXP [‘from’ EXPRESSION] ¢}’ ].

ENV_EXP ::= ‘caller’ | EXPRESSION.

There are three different ways to access a distributed variable. The first is as a parameter in a com-
posite procedure call, as discussed in Section 3.3. The other two are by local and remote accesses, either

reads or writes, in any standard C statement.

A local access of a distributed variable uses standard syntax and is the same as accessing any regu-
lar variable. The value of the variable is retrieved from, or stored into, the local copy. This implies that

the variable being accessed must be mapped to the environment in which the access is made.

A remote access, either a read or a write, involves communication between environments. It is indi-
cated by the distributed variable name, followed by a ‘‘#’, optionally followed by an explicit
specification of the set of environments to communicate with for this access. If this set is not provided
explicitly, it is defined implicitly by the mapping function to be the set of all environments to which the
distributed variable is mapped. The implicit environment specification is usually sufficient, and is con-

sidered preferable because it is more structured and because there is less likelihood of coding error.
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We first describe the semantics of remote accesses in the case where the environment set is specified
implicitly (by the associated mapping function). These accesses basically follow the convention that the

home environment produces new values and the copy environments consume them,

If the remote access is a read and the current environment is a copy environment, then DINO looks
for the first (least recent) value of that variable that has been received from the home environment but not
yet utilized. (I.e., a message buffer is maintained, and the oldest message from the home environment
with a value of that variable is used, and then removed from the buffer.) If no new value of that variable
has been received from the home environment, the reading process blocks until one is received. When the

‘new value is available, it is used to update the local copy of the variable, and then the remainder of the
expression in which the remote read is located is evaluated, using the local copy. If the remote access is a
read, the current environment is a home environment, and there are no associated copy environments,
then the remote read is the same as aiocal. read. (There is, however, some performance degradation.) If
the current environment is a home environment and there are copy environments, or the current environ-

ment is neither a home nor a copy environment, then an implicit remote read is an error.

A remote write to a distributed variable using an implicit environment set works as follows. If the
Current environment is the home environment of that vanable and there are associated copy ermron~
ments, then the value bemg assigned to that variable is used to update the local copy (since the write
occurs in an assignment context), and also is sent to all thc copy environments. (If mulnple environments
are involved, this is done efficiently using a tree.) If the current environment is the home environment and
there are no associated copy environments, then the remote write is treated as a Jocal write (again, there is
some performance degradation). If the current environment is not the home environment, then an implicit

remote write is an error.

As example of remote reads and a remote write, consider a 2-dimensional smoothing algorithm
where an N x M distributed array of data A is mapped onto an N x M array of virtual processors grid,
with each A [i](/] mapped onto grid[i][j] (its home environment) and the 4 adjoining environments.

(This is the mapping function FivePoint.) Then the statement



-20 -

A[[1# = (AL-1100# + ALIG-11# + ALIG] + ALIG+11# + ALl+11[1#/5;

will receive values of the 4 adjoining elements of A from their home environments, calculate the average
of these four values plus the local value, assign this new value to the local copy of A[i ][], and send it to

the 4 adjoining environments.

If the programmer wishes to send or receive distributed variables in a different manner than by these
implicit rules, a set of environments — ENV_EXP in the EBNF specification above — can be specified
after the # sign. ENV_EXP uses the same syntax as was discussed for it in Section 3.3. For example, if
the two dimensional array of environments grid is defined as above, then

grid[](] - grid[xid][yid] - grid[1][2]
specifies all the environments in the grid environment structure except the environment that the statement
is executed in and grid[1]{2]). In contrast to remote accesses with implicit environment sets, the distri-

buted variable does not need to be mapped to the environment where the statement is executed.

A remote read with an explicit environment set is processed as follows. The process looks for the
oldest unutilized value of that distributed variable that has been received from any node in the environ-
ment set, including itself if it is in the set, and blocks if no new value is available. Once a value is
received, it is used in evaluating the remainder of the expression. (Note that the execution may be non-

deterministic if there is more than one environment in the set.)

For a remote write with an explicit environment set, the new value of the variable is sent to all of
the environments in the environment set, including itself if it is in the set. Note that explicit accesses to
variables that are mapped to the local environment have different semantics than in the implicit case: they
do generate messages, and do not automatically update the local copy or default to local accesses. In

examples that we have considered, these semantics seemed appropriate.

After a remote read where the environment set was specified explicitly and contained more than one
element, it may be unknown which environment the new value came from. In order to obtain this infor-

mation, the ‘‘from’’ construct may be used. The keyword ‘‘from’’ is appended to the environment set
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specification, and is followed by a variable of type ‘‘envvar’’. For example, the statements

envvar who;
w = x # (grid(][] from who};

y# {;\;hO} =1z;

receive the value of x from some environment in the structure grid, assign the name of this environment

to who, and later send the value of z to the environment that the value of x was received from.

All of the above discussion pertains to ‘‘synchronous’’ distributed variables, which are the default
in DINO. Distributed variables can also be declared to be ‘‘asynchronous’’ by placing ‘‘asynch’’ before
“‘distributed’’ in their declarations. The difference between synchronous and asynchronous variables is
that a remote read to an asynchronous variable uses the most recent value and does not block. If several
values of the variable have been received since the last remote read, then the most recently received value
is used to update the local copy and the remaining values are discarded. If no new value has arrived since
the last remote read, then the local copy is used. In keeping with these rules, an explicit remote read of an
asynchronous variable requires that the variable be mapped to the current environment. The remaining
semantics of remote accesses to asynchronous variables, including all the semantics for a remote write,

are the same as for synchronous distributed variables.

By making the distinction between synchronous and asynchronous communication part of the distri-
buted variable declaration, as opposed to a property of the statement that invokes communication, it is
possible to transform a DINO program from a synchronous to an asynchronous variant by simply chang-

ing one or a few declarations. Clearly, the execution of such algorithms may be non-deterministic.

3.5. Reduction Functions.

PRIMARY :=
REDUCTION ‘(" EXPRESSION [’ EXPRESSION] ¢y 4 [‘{” ENV_EXP ‘}’].

REDUCTION ::=
‘gsum’ | ‘gprod’ | ‘gmin’ | ‘gmindex’ | ‘gmax’ | ‘gmaxdex’.
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One type of calculation that involves communication is so fundamental to parallel computation, and
departs sufficiently from simple pattemns of communication, that we have included it as a parallel
language construct. This is a reduction operation, which involves performing a commutative operation
(e.g. +, *, min, max) over one value from each environment, and often, returning the result to all the
environments. DINO provides the reduction operators ‘‘gsum’’, ‘“‘gprod’’, ‘“‘gmax’’, and ‘‘gmin’’ that
return the sum, product, maximum, or minimum of the arguments specified on each environment. For
example, if error and maxerror exist on each environment in the current active set, then

maxerror = gmax{error)
assigns the maximum of all the local values of error to each local copy of maxerror. DINO also pro-
vides two reduction functions, ‘‘gmaxdex and ‘‘gmindex’’, that take two parameters; the first is the value

to be reduced and the second is (a pointer to) an integer index. When these functions return, the second

parameter returns (points to) the index of the maximum (or minimum) value.

The reduction functions can be called with an explicit ‘‘active set’’ (ENV_EXP above) in the same
way that a composite procedure or a remote data access can. The active set specifies which environments
will participate in the reduction. The first argument of a one argument reduction may evaluate to a
(sub)array, rather than a scalar, in which case the reduction operation is performed individually over each

component of the (sub)array.

It is implicit in a reduction call that barrier synchronization is involved, and that all participating
environments must reach the call, otherwise execution is blocked. The environments do not necessarily
have to execute identical lines of code, but simply the same operation with matching parameter types.

All reductions are implemented using efficient, tree-based computation and communication.

3.6. Subarrays and Ranges.

PRIMARY ::= PRIMARY ( ‘[’ | ‘[<’ EXPRESSION ¢’ EXPRESSION ‘>]’,
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To use most distributed memory multiprocessors efficiently, it is important to send messages con-
sisting of blocks of data, rather than multiple messages consisting of single data elements, whenever pos-
sible. In order to efficiently move blocks of data between environments, DINO provides the ability to
specify subarrays, and to use arrays and subarrays in simple assignment statements, which may include

remote reads and writes. (C provides no subarray facilities.)

A rectangular subsection of an array is specified by giving the first and the last element for each
axis, e.g. “‘A[<i,j>]{]"". The index numbers are separated by a comma and enclosed in angle brackets.

The default value, specified by ‘‘[]”’, is all elements of the array along the indicated axis.

Arrays or subarrays, including remote accesses to them, may be used in assignment statements of
the form “‘A[<I1,J1>l..[<In,Jn>] = B[<K1,L1>]..[<Kn,Ln>}"". The size and shape of the
operands in the statement must be consistent, and the indices of the left and right operand are mapped to
each other in the obvious manner. If the left operand is a remote access to a distributed array, then the tai'-
get environments of each element depend on the mapping function. In this way an entire array can be dis-
tributed over a set of environments in a single assignment, with different portions possibly going to dif-
ferent environments. Conversely, if the right operand is a remote access to a distributed (sub)array, this

(sub)array is gathered from one or more environments in a single assignment.

DINO also allows the use of arrays and subarrays as parameters for composite procedures and
reduction functions, and allows ranges to be used in specifying environment sets. At present we have not
made additions to C to allow arithmetic operations on (sub)arrays, or the use of (sub)arrays as parameters
or return values to standard C functions, although we plan to do so shortly. Due to these limitations of C,
remote reads or writes of arrays or subarrays cannot currently be natural, implicit parts of standard C
statements (e.g. arithmetic operations or calls to C functions), as we would desire. Instead, they often end
up being specified by fairly explicit communication statements like “A[i [[J#=A[i ][1","A[i][I#=B[]",
or their remote read counterparts, after new values of the distributed variable have been generated, or
before they are to be used (see Example 4.2). In acknowledgement of these current limitations, we have

added the macros
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define SEND(v) v#=v
define RECV(v) v=v#

to DINO (sec Example 4.2). While these clearly depart from the implicit communication philosophy of
the language, this departure is, for the most part, a temporary one caused by the array limitations of C,
and for now the macros add some clarity to DINO programs that make remote accesses to (sub)arrays.
Note that this last discussion does not pertain to composite procedure parameters, which are perhaps the
main source of communication in practice; here arrays or subarrays are permitted, and communication is

natural and implicit.

4. Examples of DINO Programs and Critique of DINO Programming Constructs

Examples 4.1 - 4.3 contain complete DINO programs for three typical numerical computation ker-
nels. These examples have been selected to illustrate the basic DINO programming constructs, and also
to highlight some current limitations of the language. In this section we briefly discuss these examples,
and some of the strengths and weaknesses of the language that they illustrate. All the examples have a
simple structure, in particular one structure of environments and one composite procedure; a more com-

plex example is given in [RSW89].

The first example, a matrix-vector multiplication with the matrix partitioned by rows, is coded with
a structure of environments that contains the same number of environments, N, as there are rows in the
matrix. As mentioned in Section 3.2, in the current implementation, if there are fewer than N processors,
this would lead to multiprogramming the nodes and hence suboptimal efficiency. At present, a more
efficient DINO program is obtained by changing the number of environments to the actual number of pro-
cessors, P, changing id to i in the 3 executable lines of MatVec, and placing these lines inside the loop
“(for i=id*N /P ;i<(id+1)*N/P ;i++) { ... }’’. While this is not too objectionable, we include the N -
fold parallel example to make the point that we consider this the most natural way to program such a data
parallel algorithm. Later in this section we mention anticipated modifications to DINO that would make

it possible to program in this fully data parallel style without sacrificing efficiency.
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The second and third examples, a row-wise red-black algorithm for solving Poisson’s equation on
an N X N grid, and the LU factorization of an N x N matrix, are shown in the form that they would be
coded for the current version of DINO, i.e. for a structure of P (presumably < N) environments. In the
red-black algorithm, at each iteration, each processor calculates a new value of each of its odd numbered
rows, based upon the current value of this row and the two adjacent even numbered rows, and then each
processor calculates a new value of each of its even numbered rows, based upon the current value of this
row and the two adjacent odd numbered rows. Thus the parallel algorithm maps the rows to the environ-
ments in blocks, and maps a copy of each border row onto the adjacent environment. (We have assumed
that N is a multiple of P, since the programmer generally can control this in such algorithms.) The LU
factorization algorithm performs N iterations, each of which calculates a pivot and multipliers based
upon column £ (the iteration number), and then uses this information to perform eliminations in all
columns whose index is greater than &. Thus it is implemented efficiently on a distributed memory mul-
tiprocessor by partitioning the matrix by columns and using a wrap mapping. (It is immaterial whether N

is a multiple of P.)

Now we comment on the suitability of the DINO parallel programming constructs as illustrated by
these examples. At an overall level, all three programs appear to us to be fairly natural and understand-
able. They certainly appear preferable to the same algorithms programmed using vendor-supplied con-
structs. For example, they are each about 2-3 times shorter than the code for the same algorithms using
Intel iPSC hypercube constructs, and far easier to write and understand, while still executing nearly as

efficiently as the programs using iPSC constructs (see Section 5).

Examined in more detail, these examples illustrate the main DINO features, namely structures of
environments, composite procedures, distributed data declarations, and the use of distributed data for
communication. To us, the first three seem quite satisfactory for these examples. The only significant
shortcoming that we see was discussed above, namely that for efficiency reasons the number of environ-
ments currently should not exceed the number of processors. This limitation hardly complicates the cod-

ing of these three examples but it would be more natural to eliminate it. We return to this issue below.
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The use of distributed data for communication occurs in two ways, using distributed data as parame-
ters to composite procedures, and through remote (#) reads and writes. The former is natural and entirely
implicit, and in programs like Example 4.1 where it is the only form of communication, we feel commun-

ication is handled nicely.

We consider the second form of communication, remote accesses, to be the least satisfactory current
aspect of DINO. First of all, it might be argued that the programmer should have to make no distinction
between local and remote accesses, that instead these should be distinguished by the compiler or possibly
the run-time system. This is done, for example, in C* [RSt87], which is targeted for SIMD machines
(where one also may assume that communication is fast relative to computation), and in Kali [MvR§89],
which uses a restricted form of an SPMD programming model (see Section 1). It seems to us that a pro-
gramming style for paraliel, distributed computation that allows no distinction between local and remote
accesses, and still results in efficient code, is only possible if the model of parallel computation is res-
tricted considerably, as in these languages. In contrast, to never explicitly distinguish between local and
remote accesses in a language like DINO, which supports entirely general SPMD (and functionally paral-
lel) computation and strives for efficient communication in an environment where communication is
presumed to be relatively slow, would be extremely difficult if not impossible. It would require
extremely general data dependency analysis to determine when data should be sent and received, as well
as optimizations for communication efficiency such as bundling subarrays into single messages and pre-
fetching (sending messages as soon as new values are available rather than requesting them when they are
required). Thus we believe it is necessary to include some facility for explicit remote accesses in a gen-
eral purpose language for distributed computation like DINO. What we are investigating is also includ-
ing a more restricted, SIMD-like composite procedure as an option in DINO, and removing the require-
ment for the programmer to distinguish between local and remote accesses in such procedures. Instead,
the partial SIMD semantics would allow the compiler to perform the analyses mentioned above. Our
preliminary ideas on this topic are discussed in [RSW90]. This new option would be applicable to many

‘numerical algorithms, such as Examples 4.2 and 4.3, and would remove # accesses from them entirely. It

is also the main ingredient that would allow the programmer to express these algorithms at their natural



-27 -
N -fold level of parallelism and then enable the compiler to contract them to efficient P -fold algorithms.

The second shortcoming of remote accesses in the current version of DINO is the cumbersome
nature of some of them. While the changes mentioned above would eliminate remote accesses from
many DINO programs, in some programs they would remain and we would like them to be as simple and
natural as possible. Examples 4.2 and 4.3 have been chosen to illustrate two main problems with express-
ing remote accesses. First, the ‘““SEND(subarray)’’ and “RECV(subarray)’’ type accesses that we dis-
cussed at the end of Section 3.5 are used in Example 4.2. These are only required because C does not
have facilities for using subarrays in arithmetic operations or as parameters. Our compiler already has
most of the hooks for such facilities and we plan to incorporate them in the future. At this point, one
could encapsulate the communication entirely in statements like

solveRow (U[i-1][1#,U[i1[1#,U[i+11[])
which seem reasonably satisfactory to us. Secondly, in the broadcast in Example 4.3, it would be nice not
to require the explicit environment set { node[] }, but this is currently necessary due to the semantics of
distributed variables which permit implicit remote writes only from a single, home environment. We are
considering modifications to the language that would alleviate this type of problem while preserving
determinism. One possibility is to allow the home environment to be dynamically redefined within the

program.

Finally, the Examples 4.2 and 4.3 point out a relatively minor addition to DINO that would be quite
convenient. When distributed data structures are used, it would be nice to have library functions that
return the indices of that data structure that are mapped onto the current environment. For instance in
Example 4.2, “‘first(U, 0)’’ and “‘last(U, 0)"’ would return the first and last indices of the first (number 0)
axis of U that are mapped onto the current environment; this is the information that is currently specified

by the program in the variables firstrow and lastrow.
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Example 4.1
Matrix-Vector Multiplication

#define N 512
#include <stdio.h>
#include <dino.h>

environment node [N:id]

{
/* Row-wise Parallel Algorithm to Calculate a <-- M*v : ¥/

composite MatVec (in M, in v, out a)
float distributed M[N]{N] map BlockRow;
float distributed v[N] map all;
float distributed a[N] map Block;
{

int j;

/* a[id] <-- dot product of (row id of M) and v */
alid] = 0;
for (j=0; j<N; j++)
afid] += M[id](j1 * v(j1;
}
}

environment host

{

main ()
{
long int i,j;
float Min[N][N]; /* Matrix Multiplicand */
float vin[N7]; /* Vector Multiplicand */
float aout{N]; /* Vector Answer */

/* Input the Data */
for (i=0; i<N; i++) {
vin[i] =1i;
for (j=0; j<N; j++)
Min(i][j] = i*j;

f* Call the Composite Procedure */
MatVec (Min[][], vin[], aout[])#;

/* Print the Results */
for (i=0; i<N; i++)
(void) printf(" %.210, aout[i]);
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Example 4.2

Row-Wise Red Black Algorithm for Poisson’s Equations

#define N 512
#define P 32
#include <stdio.h>
#include <math.h>
#include <dino.h>

environment node [P:id]

{
double d[N], s[N1];
int needfactor = 0;

void solveRow (U,i)  /* solves tridiag (-1,4,-1) * Ulrow_i] = (U[row_i-1]+Ufrow_i+1]) */

double distributed U[N][N] map BlockRowOverlap;

int i;

.{ »

int j;

double r=1.0; /* relaxation constant, can be different constant */
double new[N];

if (needfactor == 0)

{
/* factor tridiag (-1,4,-1) */
needfactor = 1,
df1]1=2;
for (j=2; j<N-1; j++)

s(j] = - 1/d[j-1];
gl[i] = sqrt (4 - s[j1*s[j];

}

/* forward solve (solve for elements 1...N-1 of row i, add U[i][0], U[i]{N-1] to right hand side) */
new [1] = (U[i-1][1] + U[+1]{1] + ULOD/A[1];
for (j=2; j<N-2; j++)
new [j] = (U[i-1][j]1 + U[i+11[j] - s[jI*new[j-11)/d[j];
new [N-2] = (U[i-1][N-2] +U[i+1]{N-2] +U[i][N-1] -s[N-2]*new[N-3])/d[N-2];

/* backward solve */
new [N-2] = (new[N-2])/d[N-2];
for (j=N-3; j > 0; j=j-1)
new [j] = (new(j] - s[j+11*new[j+1]/d[j];

/* relaxation */
for (j=1; j<N-1; j++)
U[i](j] = r*new(j] + (1-r)*U[][j];
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/* Parallel Algorithm For Row-Wise Red Black, N/P Rows per Processor : */
composite solver (U)

double distributed U[N][N] map BlockRowOverlap;
/* partitions U by blocks of rows among processors, with each border row mapped to 2 processors */

{

int firstrow =1id ? (id * N/P) : 1, /* indices of first and last rows */
int lastrow = (id == (P-1)) ? N-2 : ((id+1) * N/P) - 1); /* in each block */

int firsteven = firstrow%?2 ? firstrow + 1: firstrow ;

int firstodd = firstrow%?2 ? firstrow : firstrow + 1;

intk,i;

for (k=0; k<100; k++)

for (i=firstodd; i <= lastrow; i=i+2) /* update odd rows in each block */

{

if ((i==firstrow) && (i!= 1) && (k !=0))
RECV(U[i-1]{]); /* DINO Macro, see end of Section 3.6 */

if ((i==lastrow) && (i !=N-2) && (k !1=0))
RECV(U[i+1][D);

solveRow (U,i);

if (((i==firstrow) && (i != 1)) || ((i==lastrow) && (i '= N-2)))
SEND(U[il[]); /* DINO Macro, see end of Section 3.6 */

for (i=firsteven; i <= lastrow; i=i+2) /* update even rows in each block */

{

if ((i==firstrow) && (i!1=1) && (k 1= 0))
RECV(U[i-1][]); /* DINO Macro, see end of Section 3.6 */

if ((i==lastrow) && (i !=N-2) && (k !=0))
RECV(U[i+1][D;

solveRow (U.,i);

if (((i==firstrow) && (i != 1)) || ((i==lastrow) && (i '= N-2)))
SEND(U[i][D);  /* DINO Macro, sece end of Section 3.6 */

environment host

{

main ()

{
float Uh [N][N]; /* input and output to ‘‘solver’™" */
long int i,j;

/* Input the Data (Uh) */
for (i=0; i<N; i++)
for (j=0; j<N; j++)
Uh(i][j] = i*j;
for (i=1; i<N-1; i++)
for (j=1; j<N-1; j++)
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Un[i]{j] = Uh[illj] - .10;
solver (Uh{][D#; /* Composite Procedure Call */

/* Printing the Results (Uh) */
for (i=0; i<N; i++)
{
for (j=0; j<N; j++)
(void) printf("%.2f ", Uh[i]{j]);
(void) printf("0);
}
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Example 4.3

LU Factorization

#define N 512
#define P 32
#include <stdio.h>
#include <math.h>
#include <dino.h>

environment node [P:id]

{
/* Parallel LU Factorization Algorithm : */
composite lufactor (A)

float distributed A[N+1][N] map WrapCol;
/* does wrap (cyclic) mapping of columns of A to the environments */
{
float distributed mult [N+1] map all; /* places copy of this vector in each environment */
int i, j, k, pivrow;
float piv, temp;

for (k=0; k<N-1; k++)
{
if (k%P) == id) /* my environment contains pivot column for this iteration */

/* select pivot and swap in pivot column */
piv = A[k][k]; pivrow =k;
for (i=k+1; i<N; i++)
if ((fabs(A[i][k])) > piv) {
piv = A[i][k]; pivrow =1; }
if (pivrow !=k) {
temp = A[k][k]; Alk][k] = A[pivrow](k]; A[pivrow][k] = temp; }

/* calculate multipliers and broadcast them and pivot row number */
A[N][k] = pivrow; /* N+1st row of A will contain pivots */
for (i=k+1; i<N; i++)
Ali][k] = Al [kI/A[K][K];
mult [<k+1, N>] # { node[] } = A [<k+1, N>][k]; /* broadcast */

}

/* receive pivot information */
mult [<k+1, N>] = mult [<k+1, N>] # { node[(k%P)] };
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/* eliminate in your columns greater than k */
pivrow = mult[N];
for (j = id; j < N; j=j+P)

if >k)

{
if (pivrow !=k) {

temp = A(k][j]; Alk][j] = Alpivrow][j]; A[pivrow][j] = temp; }
for (i=k+1; i<N; i++)

A[][j] -= mult[i]*A[K][j];

environment host

{

main ()

float A [N+1]{N]; /* input and output to ‘‘lufactor’’", last row will contain pivots */
long int i,j;

/* Input A */
for (i=0; i<N; i++)
for (j=0; j<N; j++)
Alil[j] = G+D*(+1);
for (i=0; i<N; i++)
Alil[il+=1;

Tufactor (A[][D#; /* Composite Procedure Call */

/* Print the Results */
for (i=0; i<N; i++)

{
for (j=0; j<N; j++)
(void) printf("%.2f ", A[i][j]);
(void) printf("0);
}
}
}
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5. Current Status and Future Research Directions

We have written a full compiler for DINO. It was implemented using the compiler generation tools
of [GHKSW89]. The compiler produces C code augmented by the low level parallel instructions of the
target parallel machine. The initial version runs on the Intel iPSC1 and iPSC2 hypercubes, and on the
simulators for these machines. The production of machine-dependent statements in the compiler has been
isolated, however, so that porting it to other distributed memory multiprocessors is not expected to be

difficult. The compiler is available at no charge to universities and research laboratories.

We have compared the lengths and execution times of DINO programs, including the examples in
Section 4, to identical parallel algorithms coded as similarly as possible in C using the Intel iPSC2 primi-
tives. In general, the DINO programs are 2-3 times shorter than the programs using iPSC primitives.
Their runs times on the iPSC2 range from within 1% of the iPSC2 primitive versions to roughly double
the iPSC version. Whenever the degradations are greater than 10-20%, our measurements have shown
that they are due to those communication features that, for expediency, were implemented via a run-time
library rather than in the compiler. This was done for all parameter distribution via distributed data, and
for many communications generated via remote (#) accesses to distributed data. To demonstrate that
communication via remote accesses could be made efficient, we implemented the most common remote
access mechanisms, namely those using the BlockRow and BlockCol mappings, and all remote accesses
that use explicit environment sets (e.g. Example 4.3), in the compiler. In almost all cases, these require
less than 5% more time than the same communications generatéd using iPSC primitives. The remaining
remote accesses are currently generated via the run-time library, and generally require about twice as
much time as the same communications generated using iPSC primitives. High efficiency in parameter
distribution was considered less important for a first version of the compiler, since parameter distribution
constitutes a relatively small part of most programs, and thus it is handled in the run-time library. Param-
eter distributions using distributed data generally are at most twice as expensive as the same communica-
tions using iPSC primitives, however certain cases are up to 5-7 times slower. (Among the default map-

pings, the one slow case is the wrap column mapping, where each data access is noncontiguous; the offset
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calculation is much slower when handled by a general facility than by one tailored to the mapping.)

In summary, our measurements show that a communication intensive DINO program that uses the
remote accesses that have been implemented in the compiler is at most 10% slower than the equivalent
program using low-level primitives, unless the computation is dominated by parameter distribution. We
estimate that at most 2-3 additional months of compiler development work would be required to imple-
ment all the remaining communication features, which are currently handled by the run-time library, in
the compiler, and that all DINO programs would then require at most 10-30% more time than equivalent
programs coded using low-level primitives. We feel this indicates that our high-level programming

approach can be used without significantly hindering efficiency.

The development of the DINO language and compiler has given us a platform from which we wish
to explore a number of interesting research issues. Some, involving language features and compiler
optimizations, were discussed briefly in Section 4. These include the ability to contract processes
automatically and efficiently, that is, write a DINO program for N (or some other function of the problem
size) virtual processors, and have the compiler transform this program into an efficient program whose
number of processes is equal to the number of available processors. This research problem is actually just
a subproblem of a main research thrust, which is the exploration of issues that arise in expressing parallel
algorithms for large, complex applications. These algorithms may involve multiple phases, and different
data mappings and virtual parallel machines may be appropriate at different phases. A key ingredient in
providing efficient support for such applications will be the ability to embed parallel algorithms within
other parallel algorithms; then, depending on the levei of embedding, a parallel algorithm may be con-
tracted to anywhere from P to 1 actual processes. Thus the contraction problem is a key portion of the
large scale application problem. A key ingredient in our approach to solving this problem is the provision
of panial}y-SIMD composite procedures, which greatly facilitate automatic contraction, and also allow
most remote accesses to become transparent to the user, as was discussed briefly in Section 4. Our prel-

iminary ideas on these issues are presented in [RSW90].
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In conjunction with this research into large scale parallel programming, we are collaborating with
several scientists in using DINO and assessing its strengths and weaknesses. We are also beginning to
use DINO in parallel programming instruction at the graduate and undergraduate level. Other related,
longer range research issues we are considering include the provision of dynamic distributed data struc-
tures and virtual parallel machines in a high level distributed programming language, and visual inter-

faces to high level distributed programming systems.
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Appendix A

EBNF SPECIFICATION FOR DINO EXTENSIONS TO C

Note: All non-terminals that are not defined in this appendix are from the C language syntax definition in
[KR78].

This EBNF specification uses the following notation:

0 precedence grouping

8 optional

* Zero or more

+  one or more

| alternatives

::= isreplaced by

Il one or more separated by

Terminals are enclosed in single quotes
Non-Terminals are in capitals

Program:

PROGRAM ::= (ENVIRONMENT | MAPPING_FUNCTION | DATA_DEFINITION )+ .

Environments:

ENVIRONMENT ::=
‘environment’ IDENTIFIER DIMENSION* (* EXTERNAL_DEFINITION+ ‘}’.

DIMENSION := ‘[’ EXPRESSION [ ‘" IDENTIFIER] ‘T".

EXTERNAL_DEFINITION ::=
FUNCTION_DEFINITION | DATA_DEFINITION | MAPPING_FUNCTION .

Composite Procedure Declarations:

FUNCTION_DEFINITION ::=
‘composite’ IDENTIFIER ‘(" [COMP_PARAMETER_LIST] ‘)’ FUNCTION_BODY .

COW_PAﬁAMETER_LIST m= ( ['in’ | ‘out’] IDENTIFIER ) || ‘).
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Composite Procedure Call:

STATEMENT ::=

IDENTIFIER ‘(" [ EXPRESSION_LIST] ) ‘# [ ‘{” ENV_EXP ‘}’ ] [ . STATEMENT ].

ENV_EXP ::= EXPRESSION.

Distributed Data Declaration:

DECLARATOR ::=
[ ‘asynch’ ] ‘distributed” DECLARATOR ( ‘[’ CONSTANT_EXPRESSION ‘}’ )+ MAPPING.

MAPPING := ‘map’ ( ‘all’ | IDENTIFIER | ( (IDENTIFIER IDENTIFIER) || ‘map’) ).

Distributed Data Use:

EXPRESSION ::=
PRIMARY ‘# [ ‘{* ENV_EXP [ ‘from’ EXPRESSION] ‘}’].

ENV_EXP ::= ‘caller’ | EXPRESSION.

Subarrays and Ranges:

PRIMARY := PRIMARY (‘[]’ | ‘[<’ EXPRESSION °‘,” EXPRESSION *>]".

Mapping Functions:

MAPPING_FUNCTION ::=
‘map’ IDENTIFIER ‘=" (‘[’ MAP_TYPE [ ALIGN ] EXPANSION* ‘]’ )+.

MAP_TYPE = ‘all’ | ‘compress’ | BLOCK_MAP | WRAP_MAP.

BLOCK_MAP :=
‘block’ [ ‘overlap’ [ EXPRESSION] ] [ ‘cross’ ‘axis’ EXPRESSION ].

WRAP_MAP ::= ‘wrap’ [ EXPRESSION].
ALIGN := ‘align’ ‘axis’ EXPRESSION.

EXPANSION ::= ‘expand’ ‘axis’ EXPRESSION .
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Reduction Functions:

PRIMARY :=
REDUCTION ‘(C EXPRESSION [ ¢’ EXPRESSIONT] ) ‘# [‘{" ENV_EXP ‘}'].

REDUCTION ::=
‘gsum’ | ‘gprod’ | ‘gmin’ | ‘gmindex’ | ‘gmax’ | ‘gmaxdex’.

A Note on C Syntax:

In standard C, a PROGRAM consists of one or more EXTERNAL _DEFINITIONs, each of which
can be a FUNCTION_DEFINITION or a DATA_DEFINITION. DINO complicates this somewhat
by adding environments.

C DATA_DEFINITIONs are built from DECLARATION SPECIFIERs (e.g., int, struct A { int B;
char C}, etc.), followed by DECLARATORSs, followed by INITIALIZERs. The DECLARATOR is an
IDENTIFIER, optionally nested inside one or more ‘*’’, (), or “‘[]’’ to designate respectively a
pointer to, a function returning, or an array of. DINO allows a single distributed declaration in
this nesting to designate a particular DATA_DEFINITION as distributed.

Ordinary C FUNCTION_DEFINITIONs are built from an optional TYPE SPECIFIER, a
FUNCTION _. DECLARATOR (which includes the parameter list) and a F UNCTION BODY (which
includes the parameter declarations). DINO uses a simpler syntax for composite procedures.

Certain types bf C EXPRESSIONS s are called PRIMARY's to distinguish then from the larger class of
all EXPRESSIONS .








